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1. Introduction

Since the pioneering work of ref. [1], the operator product expansion (OPE) has been

intensively used in order to improve our understanding of the non-perturbative dynamics

of the hadronic spectrum and decays for large excitations [2 – 14]. Specially intense has been

the study of the vacuum polarization correlator with different local currents. Typically,

the large Nc limit [15] is considered in these analysis, since it allows one to have infinitely

narrow resonances at arbitrarily large energies.

Recently, this problem has been revisited in ref. [16]. The aim of that paper was to

go beyond previous analysis by means of the systematic incorporation of the perturbative

corrections to the lowest order (parton) result, as well as the subleading terms in 1/Q2,

in the OPE expression of the current-current correlator. In order to reproduce the OPE

expression from the hadronic version of the current-current correlator, it was necessary

to include corrections in 1/n (n is the principal quantum number of the bound state) in
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the expressions of the mass spectrum and decay constants. By doing so, it was shown

that (in the large Nc limit) the combination of the OPE with the knowledge of the large

n mass spectrum allows one to perform a systematic determination of the preasymptotic

corrections in 1/n of the decay constants. Even more so, power-like 1/n corrections can only

be incorporated in the masses and decay constants after the inclusion of the perturbative

corrections in αs in the OPE expression.

One of the aims of this paper is to continue this line of research. We first consider

the scalar/pseudo-scalar correlators (in ref. [16] only the vector and axial-vector correlators

were considered). Besides performing the phenomenological analysis, we will have to deal

with non-trivial anomalous dimensions, which make the analysis significantly different. We

then consider the ’t Hooft model [17] (the large Nc limit of two-dimensional QCD). We

compute for the first time the 1/n corrections to the decay constants in this model. We

find that our results agree quite well with those obtained from a numerical evaluation using

the ’t Hooft equation. This provides us with a non-trivial check of our analytical result.

Finally, we also consider a model at finiteNc and obtain the associated decay constants that

are consistent with perturbation theory. This model is inspired in the large Nc limit, with

small widths for low n resonances, but still with the right analytic properties in the complex

plane. The construction of such a model is not completely trivial. To our knowledge it has

first been used in ref. [2]. Here we find that this model survives the test of the inclusion

of the perturbative logarithms of Q2, though the decay constants are no longer trivially

related with the perturbative expression of the imaginary part of the correlator. We also

show that the inclusion of perturbative corrections, or finite Nc effects, to the OPE does

not constrain the slope of the Regge trajectories, which remain a free parameter for each

different channel.

As we have mentioned above, in this paper we obtain the 1/n corrections to the decay

constants in the ’t Hooft model. This computation is actually one of the main results of this

paper. It is model independent, since the mass spectrum is known. These corrections are

an unavoidable ingredient to undertake the analysis of the preasympotic corrections to deep

inelastic scattering or B decays in two dimensions. Those processes can be in principle be

studied through the operator product expansion. In order to search for duality violations

it is compulsory to know the values of the decay constants for large n. We expect to profit

from our results in the near future to improve over the analysis of ref. [18], as well as to

perform a similar analysis for deep inelastic scattering [19].

2. Scalar/pseudoscalar correlator in D=4 dimensions

The scalar/pseudoscalar correlator reads

ΠS,P (q;µ) ≡ i

∫
dDxeiqx〈vac|T

{
JS,P (x)J†

S,P (0)
}
|vac〉 , (2.1)

where JS = ψ̄fψf and JP = iψ̄fγ5ψf . The dependence on the renormalization scale µ

appears because the currents have anomalous dimensions. In order to shorten the nota-

tion, we will use X = S,P in what follows when the distinction is not important. Using
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dispersion relations the correlator can be written like

ΠX(Q2;µ) =

∫ ∞

0
dt

1

t+Q2

1

π
ImΠX(t;µ) , (2.2)

where Q2 = −q2 is the Euclidean momentum. In four dimensions the parton-model result

gives

ΠX(q;µ) ∼ Q2 ln
Q2

µ2
. (2.3)

In order to avoid these divergences, one typically considers derivatives of the correlators like

AX(Q2;µ) ≡ Q2 d

dQ2

ΠX(Q2;µ) − ΠX(0;µ)

Q2
= Q2

∫ ∞

0
dt

1

(t+Q2)2
1

πt
ImΠX(t;µ) , (2.4)

or

BX(Q2;µ) ≡ Q4

2

d2ΠX(Q2;µ)

(dQ2)2
= Q4

∫ ∞

0
dt

1

(t+Q2)3
1

π
ImΠX(t;µ) . (2.5)

Since we are working in the large Nc limit, the spectrum consists of infinitely narrow

resonances with mass MX(n), and these functions can be written in the following way

AX(Q2;µ) = Q2
∞∑

n=0

F 2
X(n;µ)

M2
X(n)

1

(Q2 +M2
X(n))2

, (2.6)

where FX ≡ 〈vac|JX (0)|n〉, and

BX(Q2;µ) =
Q4

2

d2ΠX(Q2;µ)

(dQ2)2
= Q4

∞∑

n=0

F 2
X(n;µ)

(M2
X(n) +Q2)3

. (2.7)

For definiteness, in this article we will work with the function BX(Q2;µ). For large positive

Q2, one may try to approximate this function by its OPE, which in the chiral and Nc → ∞
limit has the following structure

BX,OPE(Q2;µ) =

(
1− 3

4
Nc
αs(Q

2)

π
ln

(
Q2

µ2

)
+· · ·

)[
NcQ

2

16π2
(1+O(αs)) (2.8)

− 3

22NcQ2
(1+O(αs))β(αs(µ))〈vac|G2(µ)|vac〉+O

(
1

Q4

)]
.

The term β〈G2〉 above is renormalization group invariant and β = µ2dα/(dµ2).

In order to obtain the perturbative piece of this expression one can use

ImΠpert.
X (t;µ) =

t

8π
NcR̃(t;µ) , (2.9)

where the expression of R̃(s) = 1 + O(αs) can be found in ref. [20, 21] with four loop

accuracy. The one-loop expression for the coefficient of the gluon condensate can be read

from ref. [22].

It should be stressed that R̃(s;µ) is renormalization-scale dependent and it fulfills the

following equation (it is understood that R̃(s;µ) is also computed in the MS scheme)

µ2 d

dµ2
m2

MS
(µ)R̃(s;µ) = 0 . (2.10)

Therefore, ImΠX(t;µ) does not have a physical meaning by itself (in physical processes it

should appear associated to masses or equivalent).
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2.1 Matching

High excitations of the QCD spectrum are believed to satisfy linear Regge trajectories:

lim
n→∞

M2
X,n

n
= constant.

For generic current-current correlators, such behaviour is consistent with perturbation

theory in the Euclidean region at leading order in αs if the decay constants are taken to

be “constants”, ie. independent of the principal quantum number n.

In this paper, we would like to include power-like corrections in αs and 1/Q2 in a

systematic way. In order to do so we will have to consider corrections to the linear Regge

trajectories as well as to the decay constants. We will follow the same procedure used

in ref. [16] for the vector and axial-vector channels. We will consider that the large n

expression for the mass spectrum can be organized within a 1/n expansion in a systematic

way starting from the asymptotic linear Regge behaviour. In order to fix (and simplify)

the problem we will assume that no lnn term appears in the mass spectrum.1 Therefore,

we write the mass spectrum in the following way (for large n)

M2
X(n) =

∞∑

s=−1

B
(−s)
X n(−s) = B

(1)
X n+B

(0)
X +

B
(−1)
X

n
+ · · · (2.11)

where B
(−s)
X are constants. We define M2

X,LO(n) = B
(1)
X n, M2

X,NLO(n) = B
(1)
X n + B

(0)
X

and so on for the leading order (LO), next-to-leading order (NLO), etc. To shorten the

notation, we will denote B
(1)
X = BX , B

(0)
X = AX and B

(−1)
X = CX .

For the decay constants, we will have a double expansion in 1/n and 1/ lnn.

F 2
X(n;µ)=n

∞∑

s=0

F 2
X,s(n;µ)

1

ns
=n

(
F 2

X,0(n;µ)+
F 2

X,1(n;µ)

n
+
F 2

X,2(n;µ)

n2
+· · ·

)
. (2.12)

The logarithmic dependence on n of the coefficients F 2
X,s(n;µ) has the following typical

structure (γ̄0 is defined in section 2.2):

F 2
X,s(n;µ) =

(
1

lnn

)2γ̄0 ∞∑

r=0

C
(r)
X,s(µ)

1

lnr n
. (2.13)

As we did with the masses, we will define F 2
X,LO(n;µ) = F 2

X,0(n;µ), F 2
X,NLO(n;µ) =

F 2
X,0(n;µ) + F 2

X,1(n;µ)/n, and so on. Note that in this case we also have an expansion in

1/ ln n.

We are now in the position to start the computation. Our aim is to compare the

hadronic and OPE expressions of BX(Q2;µ) within an expansion in 1/Q2, but keeping the

logarithms of Q. In order to do so we have to arrange the hadronic expression appropiately.

1This is a simplification. If one considers, for instance, the ’t Hooft model [17], ln n terms do indeed

appear, as we will see in the next section. If we relax this condition one can only fix the ratio between the

decay constant and the derivative of the mass. Actually, this can be done in a model independent way. The

explicit formulas are shown in the appendix.
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Our strategy is to split the sum over hadronic resonances into two pieces, for n above or

below some arbitrary but formally large n∗ such that ΛQCD ≪ ΛQCDn
∗ ≪ Q. The sum

up to n∗ can be analytically expanded in 1/Q2 and will not generate lnQ2 terms (neither

a constant term at leading order in 1/Q2). For the sum from n∗ up to ∞, we can use

eqs. (2.11) and (2.12) and the Euler-MacLaurin formula to transform the sum in an integral

plus corrections in 1/Q2. Whereas the latter do not produce logarithms, the integral does.

These logarithms of Q are generated by the large n behaviour of the bound states and the

introduction of powers of 1/n is equivalent (once introduced in the integral representation,

and for large n) to the introduction of (logarithmically modulated) 1/Q2 corrections in the

OPE expression.

Therefore, by using the Euler-MacLaurin formula, we write BX(Q2;µ) in the following

way (B2 = 1/6, B4 = −1/30, . . . )

BX(Q2;µ) =Q4

∫ ∞

0
dn

F 2
X(n;µ)

(Q2+M2
X(n))3

+Q4

[
n∗−1∑

n=0

F 2
X(n;µ)

(Q2+M2
X(n))3

−
∫ n∗

0
dn

F 2
X(n;µ)

(Q2+M2
X(n))3

]

+
Q4

2

F 2
X(n∗;µ)

(Q2+M2
X(n∗))3

+Q4
∞∑

k=1

(−1)k
|B2k|
(2k)!

d(2k−1)

dn(2k−1)

F 2
X(n;µ)

(Q2+M2
X(n))3

∣∣∣∣∣
n=n∗

, (2.14)

where n∗ stands for the subtraction point we mentioned above, such that for n larger than

n∗ one can use the asymptotic expressions (2.11) and (2.12). This allows us to eliminate

terms that vanish when n → ∞. Note that the last sum in eq. (2.14) is an asymptotic

series, and in this sense the equality should be understood.

Note also that for n below n∗, we will not distinguish between LO, NLO, etc. . . in

masses or decay constants, since for those states we will not assume that one can do an

expansion in 1/n and use eqs. (2.11) and (2.12).

Finally, note that the expressions we have for the masses and decay constants become

more and more infrared singular as we go to higher and higher orders in the 1/n expansion.

This is not a problem, since we always cut off the integral for n smaller than n∗. Either

way, the major problems in the correlator would come from the decay constants, since, in

the case of the mass, Q2 effectively acts as an infrared regulator.

And a final comment on renormalons: in principle, we are now in the position to match

eq. (2.14) with eq. (2.8) order by order in 1/Q2. One should keep in mind however that

each order in 1/Q2 of eq. (2.8) suffers from renormalon ambiguities. Those ambiguities

cancel between different orders in the 1/Q2 expansion. A way to deal with this problem

is to devise a scheme of subtracting renormalons from the perturbative series, passing the

renormalon to the condensates, or to higher order terms in the 1/Q2 expansion, where the

renormalon ambiguity cancels (see for instance [23] for an example of such a renormalon

subtraction scheme). We will not do this explicitly in this paper, since it goes beyond

our purposes and, with the precision we aim at here, these effects do not appear to be

numerically dominant, at least for large n. Nevertheless, it remains to be seen whether

they lead to some improvements for low n.
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2.2 LO matching

We want to match the hadronic, eq. (2.14), and OPE, eq. (2.8), expressions for BX(Q2;µ)

at the lowest order in 1/Q2. Only the first term in eq. (2.14) can generate logarithms or

constant terms that are not suppressed by powers of 1/Q2, so this is the term that has

to be matched to the perturbative part of the OPE expansion. We have to consider the

lowest order expressions in 1/n for the masses and decay constants, i.e. F 2
X,LO(n;µ) and

M2
X,LO(n), since the corrections in 1/n give contributions suppressed by powers of 1/Q2.

The matching condition is then

Bpt.
X ≡ Q4

∫ ∞

0
dn

F 2
X,LO(n;µ)

(Q2+M2
X,LO(n))3

=
NcQ

2

16π2


1+

11−6 ln
(

Q2

µ2

)

8
Nc
αs(Q

2)

π
+ . . .


 , (2.15)

which can be fulfilled by demanding

nF 2
X,LO(n;µ)

|dM2
X,LO(n)/dn| =

1

π
ImΠpt.

X (M2
X,LO(n);µ) . (2.16)

This leads us to the following expression for F 2
(X),0(n;µ) with four-loop running precision

F 2
X,0(n;µ) =

B2
X

8π2
Nc

[(
a(nBX)

a(µ2)

)γ̄0 c(a(nBX)

c(a(µ2))

]2

(2.17)

×
(
1 + r1a(nBX) + r2a(nBX)2 + r3a(nBX)3

)
,

where a(µ2) = αs(µ
2)/π,

a(nBX) = a(µ2)

{
1 + a(µ2)β0 ln

(
nBX

µ2

)
(2.18)

+
a(µ2)3

(
β0 ln

(
nBX

µ2

)
+ β̄1 ln

(
1 + a(µ2)β0 ln

(
nBX

µ2

)))

1+a(µ2)β0 ln
(

nBX

µ2

)
+a(µ2)β̄1 ln

(
1+a(µ2)β0 ln

(
nBX

µ2

))(β̄2−β̄1
2
)

+a(µ2)β̄1ln

[
1+a(µ2)β0 ln

(
nBX

µ2

)
+
a(µ2)3β0 ln

(
nBX

µ2

)

1+a(µ2)β0ln
(

nBX

µ2

)(β̄2−β̄1
2
)

+a(µ2)β̄1ln

(
1+a(µ2)β0ln

(
nBX

µ2

)
+a(µ2)β̄1ln

(
1+a(µ2)β0ln

(
nBX

µ2

)))]

+
2a(µ2)4β0 ln

(
nBX

µ2

)
+a(µ2)5β2

0 ln2
(

nBX

µ2

)

(
1+a(µ2)β0 ln

(
nBX

µ2

))2

(
β̄1

3

2
−β̄1β̄2+

β̄3

2

)}−1

,

and

c(x) = 1 + (γ̄1 − β̄1γ̄0)x+
1

2

(
(γ̄1 − β̄1γ̄0)

2 + γ̄2 + β̄1
2
γ̄0 − β̄1γ̄1 − β̄2γ̄0

)
x2 (2.19)

+

(
1

6
(γ̄1 − β̄1γ̄0)

3 +
1

2
(γ̄1 − β̄1γ̄0)(γ̄2 + β̄1

2
γ̄0 − β̄1γ̄1 − β̄2γ̄0)

+
1

3
(γ̄3 − β̄1

3
γ̄0 + 2β̄1β̄2γ̄0 − β̄3γ̄0 + β̄1

2
γ̄1 − β̄2γ̄1 − β̄1γ̄2)

)
x3 ,
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with γ̄i = γi/β0 and β̄i = βi/β0. The values of the various constants are, in the large Nc

limit,

r1 =
17Nc

8
(2.20)

r2 =
N2

c

768
(7431 − 160π2 − 1920ζ(3))

r3 =
N3

c

497664

(
25999999 − 1095264π2 − 11200032ζ(3) + 1607040ζ(5)

)

β0 =
11Nc

12
, β1 =

17N2
c

24
, β2 =

2857N3
c

3456
, β3 =

N4
c (150653−2376ζ(3))

124416

γ0 =
3Nc

8
, γ1 =−185N2

c

384
, γ2 =

11413N3
c

13824
, γ3 =

N4
c (460151+74048ζ(3)−126720ζ(5))

294912
.

The MS mass anomalous dimensions are taken from ref. [24, 25].

Finally, we remind that, strictly speaking, we can only fix the ratio between the decay

constant and the derivative of the mass. We have fixed this ambiguity by arbitrarily

imposing the n dependence of the mass spectrum.

2.3 NLO matching

We now want to obtain extra information on the decay constant by demanding the validity

of the OPE at O(1/Q2), in particular the absence of condensates at this order. We insert

the NLO expressions for M2
X(n) and F 2

X(n;µ) into eq. (2.14) and impose that there be no

1/Q2 contribution. With the ansatz we are using for the mass at NLO, it is compulsory to

introduce the (logarithmically modulated) 1/n corrections to the decay constant if we want

this constraint to hold. Note that it is possible to shift all the perturbative corrections to

the decay constant.

Imposing that the 1/Q2 term vanishes produces the following sum rule:

AX
d

dQ2
Bpt.

X − 2AX

Q2
Bpt.

X +
1

Q2

[
n∗−1∑

n=0

F 2
X(n;µ) −

∫ n∗

0
dnnF 2

X,LO(n;µ)

]
+
F 2

X(n∗;µ)

2Q2

+
1

Q2

∞∑

k=1

(−1)k
|B2k|
(2k)!

d(2k−1)

dn(2k−1)
F 2

X(n;µ)

∣∣∣∣∣
n=n∗

−Q4

∫ n∗

0
dn

F 2
X,1(n;µ)

(Q2 +M2
X,LO(n))3

+Q4

∫ ∞

0
dn

F 2
X,1(n;µ)

(Q2 +M2
X,LO(n))3

= 0 . (2.21)

This equality should hold independently of the value of n∗, which formally should be

taken large enough so that αs(n
∗BV ) ≪ 1, i.e. the limit ΛMS ≪ n∗BV ≪ Q2. Only

a few terms in eq. (2.21) can generate lnQ2 terms, which should cancel at any order.

Those are the first two and the last two terms. Actually, the next to last term does not

generate logarithms, but it allows to regulate possible infrared divergences appearing in the

calculation. Therefore, asking for the cancellation of the 1/Q2 suppressed logarithmic terms

– 7 –
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produced by the first two and the last term in eq. (2.21) fixes F 2
X,1. The non-logarithmic

terms should also be cancelled but they cannot be fixed from perturbation theory.

One can actually find an explicit solution to the above constraint for F 2
V,1 by performing

some integration by parts. We obtain

F 2
X,1(n;µ) =

AX

BX

d

dn

(
nF 2

X,0(n;µ)
)
. (2.22)

Note that F 2
X,1(n;µ) is of the same order in αs as F 2

X,0(n;µ). This is different that in the

vector/axial-vector case. For further details to the procedure we refer to ref. [16]. Here

we would only like to insist that non-logarithmic terms should also be cancelled, but they

cannot be fixed from perturbation theory. For these terms we cannot even give a closed

expression: lnQ2-independent terms may receive contributions from any subleading order

in the 1/n expansion of the masses and decay constants. The reason is that the decay

constant at a given order in 1/n is obtained after performing some integration by parts,

which generates new (lnQ2-independent) terms that can be Q2 enhanced. This statement

is general and also applies to any subleading power in the 1/Q2 matching computation.

2.4 NNLO matching

We now consider expressions for the mass and decay constants at NNLO. For the first time

we have to consider condensates. Simplifying terms that do not produce logs, we obtain

the following equation,

− 1

NcQ2

3

22

(
αs(Q

2)

αs(µ2)

)2γ̄0

β(αs(µ))〈vac|G2(µ)|vac〉 (2.23)

.
= Q4

∫ ∞

n∗

dn

(Q2 +BXn)3

(
F 2

X,2(n)

n
− 1

BX

d

dn

(
1

2
AXF

2
X,1(n;µ) + CXF

2
X,0(n;µ)

))
,

where
.
= stands for the fact that this equality is only true at leading logarithmic order.

Using

1

Q2

(
αs(Q

2)

αs(µ2)

)2γ̄0

.
= −Q4

∫ ∞

n∗
dn

1

(Q2 +BXn)3
1

n
2γ̄0

(
αs(BXn)

αs(µ2)

) ¯2γ0 β0

π
αs(BXn) , (2.24)

we have

F 2
X,2(n;µ) =

n

BX

d

dn

(
1

2
AXF

2
X,1(n;µ) + CXF

2
X,0(n;µ)

)
(2.25)

+
3

12π
γ̄0

(
αs(BXn)

αs(µ2)

)2γ̄0

Ncαs(BXn)
β(αs(µ))〈vac|G2(µ)|vac〉

N2
c

.

Note that the accuracy of this result is set by our knowledge of the matching coefficient

of the gluon condensate. Note as well that F 2
X,2(n;µ) is αs suppressed with respect to

F 2
X,1(n;µ) and F 2

X,0(n;µ).
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2.5 Scalar versus pseudoscalar correlators

From the previous analysis it is evident that the coefficients of the mass spectrum are free

parameters and can be different for the scalar and pseudoscalar channel, in other words,

they cannot be fixed from the OPE alone. This point was already emphasized in ref. [11]

for a model that reproduces the parton-model logarithm. In this paper, we show that that

the inclusion of corrections in αs does not affect that conclusion, and that BS and BP

somewhat play the role of the renormalization scale in the analogous perturbative analysis

in the Euclidean regime, and are therefore unobservable. Overall, the situation is similar

to the case of vector and axial-vector correlators studied in [7, 16].

However, although the constants that characterize the spectrum can be different for

the scalar and pseudoscalar channels, they have to produce the same expressions for the

OPE when combined with the decay constants. This produces some relations that must

be fulfilled. Defining t ≡ BSn = BPn
′ and taking n and n′ as continuous variables, these

relations are

1

B2
X

F 2
X,0(n;µ) =

1

t

1

π
ImΠpert.

X (t;µ)≡ 1

t
f0(t;µ) , (2.26)

1

AXBX
F 2

X,1(n;µ) =
d

dt
f0(t;µ) , (2.27)

F 2
X,2(n;µ)− n

BX

d

dn

(
1

2
AXF

2
X,1(n;µ)+CXF

2
X,0(n;µ)

)
= (2.28)

3

12π
γ̄0

(
αs(t)

αs(µ2)

) ¯2γ0

Ncαs(t)
β(αs(µ))〈vac|G2(µ)|vac〉

N2
c

.

2.6 Numerical analysis

The aim of this section is not to perform an in-depth numerical analysis of the expressions

we have found. We lack experimental data for resonances at high excitations, where our

expansion in 1/n would work best, and have no information on the decay constants; also,

one must not forget that we are staying at leading order in the 1/Nc expansion and in

the chiral limit. Instead, the purpose of our analysis is just to get a feeling of the relative

size of the corrections in 1/n, and of the importance of the resummation of the powers

of αs in (2.17). We restrict ourselves to the SU(2) flavour case. In the table we show, in

parenthesis, the experimental values of the masses of the mesons. We fit these values to

eq. (2.11), and from these fits we find the decay constants. We take most of the experimental

values from [27], except the pseudoscalar states with n = 3, 4, which we take from [28]. We

do not include the pion (the state with M2 = 0) as input in our fit. We define

F 2
S,P (n;µ) ≡ 2BS,PnG

2
S,P (n;µ) . (2.29)

The parameters of the mass spectrum obtained from the fit to the experimental values

in the table are

BS = 0.456GeV2 AS = 1.262GeV2 CS = −0.746GeV2 (2.30)

BP = 1.040GeV2 AP = 1.589GeV2 CP = −0.926GeV2 . (2.31)
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n = 1 n = 2 n = 3 n = 4

Mf0
986(980 ± 10) 1342(1370) 1544(1507 ± 5) 1703(1718 ± 6)

Mπ 1305(1300 ± 100) 1791(1812 ± 14) 2098(2070 ± 35) 2349(2360 ± 30)

GS 13318 452 229 188

GP 649 301 255 233

Table 1: We give the experimental values of the masses (in MeV) for scalar and pseudoscalar

particles (within parenthesis), compared with the values obtained from the fit. We take αs(1 GeV) =

0.5 and β〈G2〉 = −(352 MeV)4. Note that the values of GS and GP depend on the factorization

scale. We have taken µ2 = 10BS and µ2 = 10BP for the scalars and pseudoscalars respectively.

In figure 1 we can see the difference between the resummed expression of G2
X,LO(n;µ),

as taken from eq. (2.17), and the expanded expressions, at different orders in αs. We can

see important differences with respect the analysis of ref. [16] for the vector and axial-

vector currents. The impact of the resummation of logarithms (or of perturbation theory

in general) is much more important for the scalar and pseudoscalar currents, in particular

for the former. Note as well that the importance of these perturbative corrections enforces

us to take a large value for the factorization scale to ensure nice convergence properties

of the perturbative series. By inspection of the plots we conclude that our figures are

a reliable approximation for, at least, n = 2 (being on the boundary) or larger. This

should be compared with the vector and axial-vector case, in which even for n = 1 one

obtains reasonable numbers. One should keep in mind, however, that the decay constants

we are computing here are scheme and scale dependent quantities. Therefore, it would be

more appropriated to consider them in combination with another quantity with the inverse

scheme and scale dependence to become a direct observable quantity.

Figure 2 shows us that the dependence of the decay constants on n is small (again

from n ∼ 2 on). The corrections in 1/n are rapidly converging, the result at NNLO being

almost indistinguishable from that of NLO in the region where the series is convergent.

One may ask whether these results change qualitatively by choosing a different value of the

gluon condensate. We remind that the value for the gluon condensate will vary depending

on the renormalon subtraction scheme used. We have seen that the change is quite small

if we vary the gluon condensate between the range 0.01 and 0.04 GeV4.

3. Preasymptotic effects in 1/n in the ’t Hooft model

A systematic analysis of the preasymptotic effects in 1/n has not been undertaken until the

analysis of ref. [16] and this paper. Therefore, it is interesting to check the methodology in a

specific model where the results obtained with the OPE can be tested with the exact results.

Here we consider the ’t Hooft model, which will allow us to perform such an analysis. In

this model, the preasymptotic corrections to the mass spectrum are known [17] (actually

they have a lnn dependence, which will prove to be crucial) but not those to the decay

constants, for which the analysis of the preasymptotic effects in 1/n is not an easy issue.
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Figure 1: In this plot we show the differences between the expanded and the resummed expression

for G(S,P ),LO(n;µ), following the definition given in eq. (2.29).
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600

800
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NLO
NNLO
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n
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350

400

450

GPHn;10BPL

LO
NLO
NNLO

Figure 2: In this plot we show GS(n;µ) and GP (n;µ) at different orders in the 1/n expansion.

Unlike in the rest of the paper, we will consider the general situation with non-zero (and

different) quark masses. We will focus our interest in the scalar and pseudoscalar currents.

One reason is that in two dimensions the vector and axial-vector current matrix elements

can be related to them. Nevertheless, the main motivation is that we are interested in

situations where logarithms of Q can be generated, which can only happen if an infinite

number of resonances contributes to the correlator. This does not happen for the vector

and axial-vector correlator in the massless limit, where they both become almost trivial,

since only one resonance (the ground state) has overlap with the current [29, 30].2

3.1 Preasymptotic effects in 1/n from the OPE

The main aim here is to repeat up to NLO and in two dimensions the analysis performed

in section 2. The difference is that now we know the spectrum at NLO, which reads [17]

M2
X(n) = M2(n) =

∞∑

s=−1

B(−s)n(−s) = B(1)n+B(0) + · · · , (3.1)

and we define M2
LO(n) = B(1)n. Note that the spectrum is the same for the scalar and

pseudoscalar channel. The coefficients B(1) and B(0) are known in the ’t Hooft model.

2In fact, the combination of these results with the behaviour of the ground state wave function in the

x→ 0 limit (or in other words its mass) is used to fix the quark condensate [31]
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They read [17]

B(1) = π2β2 , B(0) = (m2
i,R +m2

j,R) lnn+ constant , (3.2)

where i and j represent, respectively, the flavor of the quark and antiquark that make up

the meson in the ’t Hooft model, β2 = g2Nc/(2π), and m2
i,R = m2

i −β2 is the renormalized

mass. The explicit expression for the constant term can be found in ref. [32].

Similarly to the mass we write

F 2
X(n) = F 2

X,0(n) +
F 2

X,1(n)

n
+ . . . , (3.3)

and F 2
X,LO(n) = F 2

X,0(n), F 2
X,NLO(n) = F 2

X,0(n) +F 2
X,1(n)/n. Note that, unlike our former

expression for the decay constants, eq. (2.12), there is no n multiplying in front. This is

due to the fact that in two dimensions the correlator ΠX goes like

ΠX(q) ∼ ln
Q2

µ2
. (3.4)

The correlator has also no anomalous dimension in the ’t Hooft model. The definition of

the correlators used in this section is the same to the one given in eq. (2.1) but with general

currents (with in principle different flavours): JS = ψ̄jψi and JP = iψ̄jγ5ψi. The hadronic

expressions for the correlators read

Πhadr.
S =

∞∑

n=1,3,5...

F 2
S(n)

M2(n) − q2 − iǫ
, (3.5)

Πhadr.
P =

∞∑

n=0,2,4...

F 2
P (n)

M2(n) − q2 − iǫ
, (3.6)

where FX(n) = 〈vac|JX |ij;n〉. We note that only odd and even states contribute to the

scalar and pseudoscalar correlator respectively (this implies that for the scalar correlator

the ground state does not contribute). This result was obtained in ref. [29], using some

general properties of the ’t Hooft equation operator. Those properties can be understood

somewhat on a pure symmetry basis.3 Nevertheless, it is not an easy task to visualize

this symmetry at the Lagrangian level. The situation is similar to the one found in the

spectrum of diatomic atoms [33] or of NRQCD in the static limit (see for instance [34]).

In those situations a convenient way to deal with the problem is to project the Lagrangian

to the Hilbert space sector we are interested in. In our case, this is basically equivalent to

ending up in the ’t Hooft equation (wich we present in the next section), where one can use

the operator identities found in ref. [29] for the current matrix elements (however it should

also be possible to relate these operator identities with some underlying symmetries of the

system), in particular eq. (3.19). Using these results one can discriminate which states give

non-zero contribution to each correlator.

3We cannot use parity symmetry due to the fact that the quantization frame that we use does not

respect this symmetry explicitly. This means that the states and currents have complicated transformation

properties under this discrete symmetry.
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Figure 3: Diagrams that contribute to the OPE at one loop in perturbation theory.

We now define the Adler-like function in two dimensions

AX ≡ −Q2dΠX(Q2)

dQ2
, (3.7)

for which its hadronic expressions read

Ahadr.
X = Q2

∞∑

nX

F 2
X(n)

(M(n)2 +Q2)2
, (3.8)

where nX stands for the sum for the scalar or pseudoscalar case respectively.

In order to follow the procedure used in the previous section we need the OPE expres-

sion for AX . It reads:

Apert.
X =

Nc

2π

(
1+

β2

Q2
+DX

mimj

Q2

(
ln

(
m2

i

Q2

)
+ln

(
m2

j

Q2

))
+

2π

Nc
DX

mj〈ψ̄iψi〉+mi〈ψ̄jψj〉
Q2

)
+· · · ,

(3.9)

where DS = 1 and DP = −1, and we have neglected terms of O(m2/Q2) (except for

the logarithm term) and terms of O(1/Q3). The pure perturbative piece of this result

is obtained from the computation of the diagrams shown in figure 3. The condensate

contribution is obtained by “collapsing” one of the quark propagators. We see that the

coefficient of the quark condensate has no lnQ piece.

Note that in two dimensions the coupling constant β2 has dimensions. Therefore, the

perturbative and OPE expansions are related. In particular, in two dimensions, there are

no problems with renormalons, due to the fact that there are no marginal operators in the

Lagrangian.

In eq. (3.9) the quark condensate, as usual, only includes the pure non-perturbative

contribution, ie. the free result4

〈ψ̄iψi〉pert. =
Nc

2π
mi ln

m2
i

µ2
(3.10)

has been subtracted and displayed explicitly in Apert.
X .

We can now combine all this information with our knowledge of the large n behaviour

of the mass spectrum to obtain the 1/n preasymptotic effects of the decay constants.

4Note that we have a sign difference with respect to the result of ref. [35]. We also disregard finite pieces,

which are scheme dependent.
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We follow the same procedure of section 2.1. To rewrite Ahadr.
X using the Euler-

Maclaurin formula, we first define n = 2n′ + 1 for the scalar case and n = 2n′ for the pseu-

doscalar case, so that we can transform the sums into an integral over a continuous variable.

The only term that will give a LO contribution, not suppressed by powers of Q2, will be

Q2

∫ ∞

0

dn

2

F 2
X,LO(n)

(M2
LO(n) +Q2)2

=

∫ ∞

0

dn

2

F 2
X,0(n)

(nπ2β2 +Q2)2
=
Nc

2π
, (3.11)

where the last equality is the matching to the partonic result and gives us

F 2
X,0(n) = Ncπβ

2 . (3.12)

In order to go beyond the parton result we need to consider the 1/n corrections to

the linear behaviour in the mass. Note that the form of the spectrum is different from the

one assumed in ref. [16], or in section 2: in the ’t Hooft model we know that B(0) is not a

constant and diverges logarithmically in n. We actually do not care about the finite piece

of B(0), since such contribution would constrain the O(1/n2) term of the decay constant

but not the O(1/n) term; this is so because F 2
X,0 is constant. Therefore in what follows we

will neglect the constant term in B(0) and only consider the logarithmic correction. Within

this approximation, the matching at NLO reads (at logarithmic order, after expanding and

integrating by parts),

Q2

∫ ∞

n∗

dn

2

F 2
X,1(n)/n

(nπ2β2 +Q2)2
−Q2

∫ ∞

n∗

dn

2

F 2
X,0

(nπ2β2 +Q2)2
(m2

i,R +m2
j,R)

nπ2β2
(3.13)

.
= −Nc

2π

DX

Q2
(2mimj) ln(Q2)

.
= −Q2

∫ ∞

n∗

dn

2

1

(nπ2β2 +Q2)2
Ncπβ

2DX(2mimj)

nπ2β2
,

where again
.
= means that the equality is only true at logarithmic order. And so,

F 2
X,1(n)

n
= −Ncπβ

2
2mimjDX −m2

i,R −m2
j,R

nπ2β2
. (3.14)

It will prove useful in the next section to combine the scalar and pseudoscalar result

for the decay constant in a single function. We define

F 2(n) =

{
FS(n) forn = odd

FP (n) forn = even .

Therefore, we have

F 2(n) = Ncπβ
2

[
1 +

m2
i,R +m2

j,R

nπ2β2
+

2mimj

nπ2β2
(−1)n

]
. (3.15)

Let us note that there is a term which is sign-alternating.

Finally, we stress that we have obtained these expressions for the decay constant using

the OPE, symmetries and the knowledge of the mass spectrum, nothing else. In the next

subsection we check whether the explicit numeric computation of the decay constants from

the ’t Hooft equation fulfills these expectations.
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3.2 Preasymptotic effects in 1/n from the hadronic solution

In the ’t Hooft model it is possible to write the decay constants F 2
X(n) in terms of the light-

cone distribution amplitude of the bound state, φij
n (x), which is the solution of the equation

M2(n)φij
n (x) =

(
m2

i,R

x
+
m2

j,R

1 − x

)
φij

n (x) − β2

∫ 1

0
dyφij

n (y)P
1

(y − x)2
, (3.16)

where x = p+/P+
n , with p+ being the momentum of the quark i, and P stands for Cauchy’s

Principal Value.

The decay constant for the scalar case then reads [29]

FS(n) =

√
Nc

4π

∫ 1

0
dxφij

n (x)

(
mi

x
− mj

1 − x

)
= mi

√
Nc

π

∫ 1

0
dx
φij

n (x)

x
for n odd , (3.17)

and zero otherwise. For the pseudoscalar we have

FP (n) =

√
Nc

4π

∫ 1

0
dxφij

n (x)

(
mi

x
+

mj

1 − x

)
= mi

√
Nc

π

∫ 1

0
dx
φij

n (x)

x
for n even , (3.18)

and zero otherwise. Note that in the above two equalities we have used the remarkable

identity

mi

∫ 1

0
dx
φij

n (x)

x
= (−1)nmj

∫ 1

0
dx
φij

n (x)

1 − x
, (3.19)

obtained in ref. [29].

By comparing eqs. (3.17) and (3.18) with eq. (3.15) we can obtain expressions for
∫ 1
0 dx

φij
n (x)
x with 1/n accuracy:5

∫ 1

0
dx
φij

n (x)

x
= π

β

mi

[
1 +

m2
i,R +m2

j,R

2nπ2β2
+
mimj

nπ2β2
(−1)n + O

(
1

n2

)]
. (3.20)

By using symmetries and the ’t Hooft equation, we can also obtain

M2(n)

∫ 1

0
dxφij

n (x) = m2
i

∫ 1

0
dx
φij

n (x)

x
+m2

j

∫ 1

0
dx
φij

n (x)

1 − x
(3.21)

= πβmi

[
1 +

m2
i,R +m2

j,R

2nπ2β2
+
mimj

nπ2β2
(−1)n

]

+(−1)nπβmj

[
1 +

m2
i,R +m2

j,R

2nπ2β2
+
mimj

nπ2β2
(−1)n

]
+ O

(
1

n2

)
,

5In this result the global phase has been fixed to 1. One always has this freedom but note that this also

fixes the global phase of φij
n (x), which is no longer arbitrary. The leading order result was first obtained in

refs. [29, 30] and later confirmed using the boundary layer equation in ref. [32]. The 1/n correction is new.

Note that these 1/n corrections have to be included in any analysis of preasymptotic effects in the ’t Hooft

model, in particular in the analysis of ref. [18]. Nevertheless, the results for the moments obtained in that

paper remain unchanged.
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where in the last equality we have made use of the symmetry property of the ’t Hooft wave

functions,

φij
n (x) = (−1)nφji

n (1 − x) . (3.22)

These results can also be used to deepen our analytic understanding of the ’t Hooft

wave function in the end-point regions in the massless limit (actually we need only one

mass to go to zero at each boundary, mi for x → 0, or mj for x → 1). In the massless

quark limit the integral in eq. (3.20) is dominated by the behaviour of the wave-function

in the x→ 0 boundary:

φij
n (x) = cnx

βi (1 + o(x)) , (3.23)

where βi is the solution of

m2
i,R + β2πβi cot πβi = 0 , (3.24)

which in the massless limit approximates to

βi =

√
3

π

mi

β
+ o(mi) . (3.25)

Therefore we obtain for the integral

lim
mi→0

mi

∫ 1

0
dx
φij

n (x)

x
= cn

πβ√
3
, (3.26)

and, in the massless quark limit, the problem of getting the decay constants could be

reformulated as that of obtaining the coefficient cn. One can find its value for n = 0 (note

that this result does also require mj = 0):

lim
mi,j→0

c0 = 1. (3.27)

In principle, there are several ways to obtain this result. One can work along the lines of

ref. [36] to obtain an approximated Schrodinger-like equation, which can be approximately

solved for the ground state. Another possibility to fix the value c0 is by matching the

solution φ0 = 1 (the exact solution in the strict massless limit) and the solution φ0 = c0x
βi

in the region of overlap (the latter is valid for x≪ 1, whereas it can be approximated to a

constant, c0, for values larger than e−β/mi , which is a very small quantity for small masses.

Therefore, there is a region on which the constant solutions: “c0”, and “1”, overlap and

should be equal by continuity). One can also use the value of limmi→0

∫ 1
0 φ0(x) = 1, to fix c0.

Nevertheless, in this paper, we are mainly interested in the study of high excitations.

The combination of eq. (3.26) and eq. (3.15) allows us to give the following prediction for cn:

lim
mi→0

cn =
√

3

(
1 − 1

π2

1

n
+

m2
j

2nπ2β2
+ O(1/n2)

)
. (3.28)

How much of all this can be understood by a direct analytic computation? In principle the

’t Hooft equation can only be solved numerically. Nevertheless, for large n, the ’t Hooft

equation can be approximated by the boundary-layer equation [30]:

φi(ξ) =
m2

i,R

ξ
φi(ξ) − β2

∫ ∞

0
dξ′φi(ξ′)P

1

(ξ′ − ξ)2
, (3.29)
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where

φi(ξ) ≡ lim
n→∞

φij
n (ξ/M2(n)) , (3.30)

as far as we are not in the x → 1 limit (one could also write a symmetric equation con-

venient for x ∼ 1 region). It is possible to analytically solve the Mellin transform of this

equation [32]. In particular, one obtains

∫ ∞

0
dξ
φi(ξ)

ξ
= π

β

mi
,

∫ ∞

0
dξφi(ξ) = π

mi

β
. (3.31)

From these results one easily checks the leading order terms of eqs. (3.20) and eq. (3.28).

Note that for the last equation φn(x) ≃ cnx
βi is valid for x ≪ 1. In particular, for high

excitations, the region of validity of this expression is very small, restricted to the region

ξ ≡M2
nx≪ β2.

In order to check the 1/n corrections in eqs. (3.20) and (3.28), one should be able to

go one order beyond the analysis of ref. [32], which appears to be a formidable task. This

would go far beyond the aim of this paper. Instead, in the remainder of this section, we

will try to see whether eqs. (3.20), (3.27) and (3.28) can be confirmed by a direct numerical

computation.

In order to perform the numerical analysis we will use two methods:

1. One is based on the Brower-Spence-Weis improvement of the Multhopp tech-

nique [32]. In this method the ’t Hooft wave function is decomposed in a basis of sin

functions. Therefore, the ’t Hooft equation becomes a infinity-dimensional matrix,

which at the numerical level is truncated for a finite number of sines. This method

appears to be very well suited for very high excitations, and allows us to work with

different quark masses without problems. Nevertheless, it has some problems for very

low masses and it does not have the right functional behaviour in the x→ 0, 1 limit.

2. The other method that we use is based on the decomposition of the ’t Hooft wave func-

tion in a basis of xβi(1−x)βjP (x) functions, where P (x) are Jacobi polynomials. This

method has already been used in refs. [37, 38]. Unfortunately, we are only able to give

reliable numbers for even states with equal masses. For those states we can perform

numerical checks with the numbers given in [38] (we use them as numerical check of

our implementation of the method, since our interest is on a different regime than that

of [38]: high excitations and small masses). In any case, this method does not appear

to work very well for very high excitations, as well as for very small masses (though it

can reach lower limits than method 1). Moreover, at a certain point the introduction

of more Jacobi polynomials in the calculation spoils the convergence of the result,

except for the wave function of the ground state. On the other hand, by construction,

this method should have the right functional behaviour in the x→ 0, 1 limit.

We now first try to check eq. (3.20). In figure 4 we show our results with method 2. The

results from the numerical calculation are presented with some rough estimation of their

uncertainty, performed by considering the difference between evaluating directly eq. (3.20)

or a properly weighted (see tables 2 and 3 for the definition) combination of eq. (3.21).
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n mi

β

∫
dxφn(x)

x
M2(n)
2miβ

∫
dxφn(x)

2 3.24 3.24

4 3.20 3.20

6 3.19 3.18

Table 2: Results from the numerical calculation using method 2 for mi = mj = β.

n mi

β

∫
dxφn(x)

x
M2(n)
2miβ

∫
dxφn(x)

2 2.97 2.96

4 3.06 3.05

6 3.10 3.08

Table 3: Results from the numerical calculation using method 2 for mi = mj = 0.1β.
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Figure 4: In this plot we show our results for eq. (3.20) with method 2. The bands reflect the

difference between using directly eq. (3.20) or a properly weighted combination of eq. (3.21), which

we show in tables 2 and 3.

We show in tables 2 and 3 the differences for two mass values. With this method we

cannot go to very large values of n, nor consider different quark masses or odd values of n.

Nevertheless, for the range of values one can consider with this method the agreement is

perfect. The 1/n and mass dependence can be unambiguously checked very nicely.

In figure 5 we show our results with method 1. In this case we can take much larger

values of n, although not so small quark masses as in method 2. On the other hand,

in this case, the use of eq. (3.20) or the properly weighted combination of eq. (3.21) is

basically indistinguishable. We can see clearly in this figure that scalar and pseudoscalar

states follow different curves, as their corrections involve the difference of the masses of
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Figure 5: In this plot we show our results with method 1 for eq. (3.20).

the quarks or their addition, respectively. The behaviour of the corrections changes from

increasing to decreasing with n depending on how the sum and the difference of the quark

masses compare to 2β. We can also see how the numerical results approach the expected

analytic expressions as n increases.

We conclude that we have been able to unambiguously and nicely check eqs. (3.20)

and (3.21) numerically. We note that we have been able to visualize the mass depen-

dence and the sign alternating terms, and that, in particular, we are reaching a numerical

precision below 1%.

We now try to check eq. (3.27). In figure 6 we show the plot of φ0(x)/x
βi for small

values of x calculated with method 2, and we can see that, indeed, as we approach the

massless limit c0 tends to 1. Method 1 is not efficient for the evaluation of the wave function

near the origin, for, as we said before, it does not have the right functional behaviour in

the x→ 0, 1 limit: it yields a sinusoidal function that oscillates around the right solution,

until we approach the boundaries, where the curve that the oscillations follow does not die

off as it should.

Finally, we try to check eq. (3.28). In this case we cannot use method 2: although it

incorporates by definition the right cnx
βi behaviour, its numerical precision at high values

of n is very poor. We are left then with method 1. Numerical precision in this case is not

so much of an issue, but due to the aforementioned limitations of this method we can only

hope to get some estimate for cn by finding the path around which our sinusoidal solutions

oscillate when x is not too close to 0, and then extrapolate this path to the limit x→ 0. In
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Figure 6: In this plot we show our results with method 2 for eq. (3.27) with mi = mj . Due to the

small values of the quark masses, in the range we are showing the functions are essentially constant.

figure 7 we show our results for n=4 with mi = 0.001β, mj = 2β: we evaluate φ4(x)/x
βi at

points separated a distance ∆x = 10−6, starting at x = 10−5 and ending at x = 10−3, and

we fit them to a quadratic function. Depending on how many of the points that are closer

to the origin we include in the fit, the resulting curve will be one or another, as shown in the

plot, somewhat oscillating around the two extreme curves displayed. The possible values

of the fit at x = 0 are the possible values of c4 that we can find with method 1. In figure 8

we show the results up to n = 25 for the cases mi = 0.001β, mj = 2β and mi = 0.001β,

mj = 0.001β. Overall, this numerical analysis serves as a consistency check of eq. (3.28).

4. Finite Nc

This far the discussion has been restricted to the large Nc limit. We would like to finish

this paper by studying models valid at finite Nc. One model with the right analytic

properties for the current-current correlator and with the correct limit in the large Nc

limit has been built in ref. [2]. This model was also able to reproduce the leading parton-

model logarithm at large Q2. Working analogously to previous sections, we will consider

whether subleading perturbative corrections can be incorporated in this model, and see if

by including 1/Nc effects there appears any connection between the slopes of resonances

of different parity. For definiteness, we will consider the vector-vector correlator but most

of the discussion trivially applies to any other current-current correlator; in particular the

scalar or pseudoscalar correlator, for which the only complication would be to take into

account the anomalous dimensions. Therefore, we take

Πµν
V (q) ≡ (qµqν − gµνq2)ΠV (q) ≡ i

∫
d4xeiqx〈vac|Jµ

V (x)Jν
V (0)|vac〉 , (4.1)
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Figure 7: The dots in this plot correspond to values of φ4(x)/x
βi sampled with ∆x = 10−6 for

mi = 0.001β, mj = 2β. We show some of the possible fits to a quadratic function, depending on

the set of points used, from all those that fall within the interval x ∈ [10−5, 10−3] to only those that

are within x ∈ [10−4, 10−3]. The possible values of the fits at the origin give us an estimated range

for c4.
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Figure 8: In this plot we show our results with method 1 for eq. (3.28).

where Jµ
V =

∑
f Qf ψ̄fγ

µψf . In order to avoid divergences, we will work with the Adler

function

AV (Q2) ≡ −Q2 d

dQ2
ΠV (Q2) = Q2

∫ ∞

0
dt

1

(t+Q2)2
1

π
ImΠV (t) . (4.2)
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We consider the following expression for the vacuum polarization,

ΠV (Q2) =

∞∑

n=0

F 2
V (n)

(
Q2

Λ2

)1− C
πNc Λ2 +M2

V (n)

. (4.3)

For F 2
V (n) =constant and M2

V (n) = BV n, we recover the model of ref. [2]. Here we will

allow F 2
V (n) to be n-dependent. The Adler function for this model reads

AV (Q2) =

(
1 − C

πNc

)
z

∞∑

n=0

F 2
V (n)

Λ2

1

(z + n)2
, z =

(
Q2

Λ2

)1− C
πNc

. (4.4)

For simplicity we will set Λ2 = BV in the following. It will also be enough for our purposes

to keep the analysis of A(Q2) to the lowest order in the OPE. Therefore, we only consider

AV,pert.(Q
2)=A0

(
1+c1

αA(Q2)

π

)
=−Q2 d

dQ2
A0

∫ ∞

0
dt

1

(t+Q2)2

(
1+c1

αM (t)

π

)
, (4.5)

where αA(Q2) and αM (t2) admit an analytic expansion in terms of αs(Q
2) (computed in

the MS scheme):

αA(Q2) = αs(Q
2)

(
1 +

c2
c1

αs(Q
2)

π
+
d3

c1

α2
s (Q

2)

π2
+ · · ·

)
(4.6)

αM (t) = αs(t)

(
1 +

c2
c1

αs(t)

π
+
c3
c1

α2
s (t)

π2
+ · · ·

)
. (4.7)

The coefficients ci and di have been computed in ref. [26] (they can be obtained from each

other through dispersion relations):

c1 =
3Nc

8
(4.8)

c2 =
N2

c

128

(
(243 − 176ζ(3)) − 4nf

Nc
(11 − 8ζ(3))

)

c3 =
N3

c

27648

[
346201 − 2904π2 − 324528ζ(3) + 63360ζ(5)

+
2nf

Nc
(−62863 + 528π2 + 51216ζ(3) − 5760ζ(5))

]

+

(∑
f Qf

)2

∑
f Q

2
f

N2
c

1024

(
176

3
− 128ζ(3)

)
,

and

A0 =
∑

f

Q2
f

4

3

Nc

16π2
.

As before, through the Euler-Maclaurin formula we can see that the matching between the

perturbative and the hadronic calculations at logarithmic order requires that

A0

(
1 + c1

αA(Q2)

π

)
=

(
1 − C

πNc

)
z

∫ ∞

0
dn
F 2

V,0(n)

BV

1

(z + n)2
, (4.9)
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where we have added the subscript 0 to F 2
V (n), in agreement with our notation of sec-

tion 2.1. In ref. [16], we obtained that

F 2,∞
V,0

BV
= A0

(
1 + c∞1

α∞
M (BV n)

π

)
, (4.10)

where the upperscript ∞ stands for the Nc → ∞ limit. One could consider that the same

structure should hold for finite Nc in our model and that the decay constant should then be

proportional to 1 + c1
αM (BV n)

π . However, this is not so due to the specific functionality on

Q2 that we have introduced. For instance, it is interesting to consider the following quantity

z

∫ ∞

0
dn

1

(n+z)2
αM (BV n)=αA(BV z)=αA(Q2)− C

πNc
ln
Q2

BV
β∞A (α∞

A (Q2))+O

(
1

N2
c

)
. (4.11)

The first term is what we should obtain to match the perturbative calculation. If we want

F 2
V,0(n) to be expressed in terms of αs(BV n) we have to fine tune it in order to eliminate

the second extra term.

If we write
F 2

V,0

BV
=

A0

1 − C
πNc

(
1 + c1

αM (BV n)

π

)
+

C

πNc

δF 2
V,0

BV
, (4.12)

the following equality has to be satisfied (here, with the precision of the calculation, we

can replace z ≃ Q2/BV )

z

∫ ∞

0
dn

1

(n+ z)2
δF 2

V,0

BV
= ln

Q2

BV
β∞A (α∞

A (Q2)) . (4.13)

This implies that δF 2 ∼ α2
s (BV ) ln n. Note that β0 and β1 are the same for αA, αM and

αs. Therefore, at low orders in α the distinction between different renormalization schemes

is superfluous.

We can try to refine our ansatz. If we rewrite the expression for F 2
V in the following way,

F 2
V,0

BV
=

A0

1 − C
πNc

[(
1 + c1

αM (BV n
1+ C

πNc )

π

)
+

C

πNc

δF̃ 2
V,0

BV

]
(4.14)

=
A0

1− C
πNc

[(
1+c1

αM (BV n)

π
+
c1
π

C

πNc
lnnβ∞M (α∞

M (BV n))+O

(
1

N2
c

))
+

C

πNc

δF̃ 2
V,0

BV

]
,

some logs are reabsorbed in αM (BV n
1+ C

πNc ) and δF̃ 2
V,0 ∼ O(α3

s (BV ), α3+s
s (BV ) lns n). We

can easily obtain the coefficient multiplying α3
s (BV ).6 We find that, at O(α3

s ),

δF̃ 2
V,0

BV
= − 2

3π
β2

0c1αs(BV )3 . (4.15)

6Nevertheless, in this case it is more difficult to get a closed expression with α3+s
s (BV ) lns n accuracy.

We do not undertake the effort to try to get it. At this level of precision our expression is good enough and

also good enough to make our point.
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The calculations for the axial-vector case are equal replacing BV by BA (the slope of

the Regge trajectory in the axial-vector case). Therefore, as in ref. [16], we can satisfy

the constraints of the OPE with independent values for BV and BA. Thus, we conclude

that the OPE cannot constrain BV and BA to be equal for general models with the right

analytic properties at finite Nc. Note as well that, in general, at finite Nc

F 2
V,0(n)

|dM2
V,LO(n)/dn| 6=

1

π
ImΠpt.

V (M2
V,LO(n)) . (4.16)

4.1 ρ at finite Nc

We now briefly consider what this model tells us about the computation of ρ(t) ≡
1
π ImΠV (t). This is a physical observable related with σ(e+e− → hadrons).

We first note that one can approximate the sum over n by an integral (i.e. use the

Euler McLaurin expansion) if q2 → ∞ and | arg z| < π for the model of ref. [2]. At this

respect the modification to this model introduced by us is simply the introduction of logs of

n in the decay constants, which should not change the analytic properties of the function.

This allows us to obtain the OPE expression for the vacuum polarization from the hadronic

expression if | arg z| < π, as in the original model of ref. [2]. For q2 positive we do have

| arg z| < π. Thus, we can find the OPE expression from the hadronic one, and vice versa,

obtain the hadronic expression from the OPE. In particular, we can obtain its imaginary

part, which corresponds to ρ(t). Part of the original structure of ρ(s) will be lost in the

way, as the OPE misses non-analytic terms. The associated error is exponential with an

exponent that vanishes when nf → 0 (leaving aside the fact that one expects the series to

be asymptotic). Therefore, the general structure of the solution would be

ρ(s) = ρpert.(s) + (power like) + (exp. suppr.) ,

where only the last term does not follow from the OPE. Unfortunately this result has been

obtained for an specific model. In general, one cannot get in a model independent way that

ρ(s) = ρpert.(s) + · · · ,

where the dots mean a contribution that decays to zero faster than any power of 1/ ln s.

5. Conclusions

We have studied the constraints that the OPE imposes on models for current-current

correlators inspired in the large Nc limit and Regge trajectories. We have considered the

case of scalar/pseudoscalar correlators. Assuming a model for the mass spectrum consisting

of a linear Regge behaviour plus corrections in 1/n, we have obtained the logarithmic

behaviour in n of the decay constants within a systematic expansion in 1/n. We have

accomplished this by matching the hadronic and OPE expressions of the Adler function.

The inclusion of 1/n corrections to the decay constants is compulsory if one aims at going

beyond the leading partonic result, as the 1/n terms are needed to produce logarithms of

Q2 in the Euclidean. We have performed a numerical analysis of our results, in which we
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have seen the importance of the resummation of the lnn terms of the decay constants,

specially for low n. Our results show that it is possible to have a different slope, BS/P , for

the Regge behaviour of the scalar and pseudoscalar spectrum, and yet comply with all the

constraints imposed by the OPE (including perturbative corrections).

In order to check our setup in a controlled environment, where the results obtained with

the OPE can be tested with the exact results, we have studied the preasymptotic effects

of the scalar/pseudoscalar correlators in the ’t Hooft model (QCD in 2 dimensions in the

large Nc limit). This has allowed us to compute the 1/n corrections to the decay constants

in the ’t Hooft model for the first time. Actually, the connection between the OPE and

the decay constants provides us with a relatively easy way of finding 1/n corrections to

hadronic matrix elements in the ’t Hooft model. A direct analytic computation from the

’t Hooft equation appears to be quite involved, however we have been able to confirm our

results with the numerical evaluation from the ’t Hooft equation.

Finally, we have also considered a model at finite Nc [2] and modified it to allow for the

inclusion of perturbative (logarithmic) corrections. We have then obtained the associated

decay constants that are consistent with perturbation theory, though they are no longer

trivially related with the perturbative expression of the imaginary part of the correlator.

We have seen that consistency of this model with the OPE can be obtained with different

slopes for the Regge trajectory associated to each channel.

Acknowledgments

This work is partially supported by the network Flavianet MRTN-CT-2006-035482, by the

spanish grant FPA2007-60275, by the Spanish Consolider-Ingenio 2010 Programme CPAN

(CSD2007-00042), and by the catalan grant SGR2005-00916.

A. Model independent ratios

In this appendix we will present general, model-independent, matching formulas between

the OPE and the hadronic calculation both for vector/axial-vector (for the notation in

this case, see ref. [16]) and for scalar/pseudo-scalar correlators, within an expansion in

powers of 1/M2
n .

The procedure is the same as in the main body of the text. Take the Adler function

(AX in the vector/axial-vector case, BX in the scalar/pseudo-scalar case), transform it

using the Euler-Maclaurin formula, and focus on the piece that can produce logarithms,

namely, the integral.

A.1 Vector/axial-vector correlators

In this case we work with

Q2

∫ ∞

n∗
dn

F 2
X(n)

(Q2 +M2
n)2

= Q2

∫ ∞

M2
n∗

dM2
n

1∣∣∣dM2
n

dn

∣∣∣
F 2

X(n)

(Q2 +M2
n)2

. (A.1)

– 25 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
9

Now, instead of assuming a model for Mn, we will just expand

1∣∣∣dM2
n

dn

∣∣∣
F 2

X(n) ≡ F̃X,0(M
2
n) +

F̃X,1(M
2
n)

M2
n

+
F̃X,2(M

2
n)

M4
n

+ . . . (A.2)

Within this expansion, retracing the steps of section 3 in ref. [16] the matching conditions

between OPE and hadronic calculations are trivially obtained:

• LO: F̃0,X(M2
n) =

1
π ImΠpt.

X (M2
n)

• NLO: F̃1,X(M2
n) = 0

• NNLO: F̃2,X(M2
n) =

35
968π2β0N

2
c α

2
s (M

2
n)
β(αs(µ))〈vac|G2(µ)|vac〉

N2
c

.

A.2 Scalar/pseudo-scalar correlators

Here we work with

Q4

∫ ∞

n∗
dn

F 2
X(n)

(Q2 +M2
n)3

= Q4

∫ ∞

M2
n∗

dM2
n

1∣∣∣dM2
n

dn

∣∣∣
F 2

X(n;µ)

(Q2 +M2
n)3

. (A.3)

As the dimensions of these correlators are different from those of the vector/axial-vector

correlators, we will use a different expansion,

1∣∣∣dM2
n

dn

∣∣∣
F 2

X(n;µ) ≡M2
n

(
F̄X,0(M

2
n;µ) +

F̄X,1(M
2
n;µ)

M2
n

+
F̄X,2(M

2
n;µ)

M4
n

+ . . .

)
. (A.4)

And the matching results are

• LO: F̄0,X(M2
n;µ) =

1
M2

n

1
π ImΠpt.

X (M2
n;µ)

• NLO: F̄1,X(M2
n;µ) = 0

• NNLO: F̄2,X(M2
n;µ) =

3
11πβ0γ̄0

(
αs(M2

n)
αs(µ2)

)2γ̄0

Ncαs(M
2
n)
β(αs(µ))〈vac|G2(µ)|vac〉

N2
c

.
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